Memory Tagging Extension for the XiangShan RISC-V Processor

Joshua Mathew Tyler Chang Valeria Espinoza
Columbia University Columbia University Columbia University
New York, USA New York, USA New York, USA
jm5915@columbia.edu tc3407@columbia.edu vne2102@columbia.edu

Abstract

Memory safety vulnerabilities, such as buffer overflows and use-
after-free errors, remain a critical security challenge in low-level
systems programming. While software-based sanitizers provide
detection capabilities, they often incur prohibitive runtime over-
heads. Hardware-assisted Memory Tagging Extensions (MTE) offer
a promising alternative by enforcing pointer-memory consistency
directly at the architectural level. This paper documents the im-
plementation and preliminary evaluation of the RISC-V ZIMTE
extension, utilizing a Virtually Indexed Tag Table (VITT), within
the XiangShan GEM5 simulator. We detail the development of a
robust experimental workflow, ranging from bare-metal verifica-
tion using the Abstract Machine framework to full-system Linux
boot configuration. Our results validate the functional correctness
of the tag generation and checking logic on bare-metal workloads,
establishing a foundation for future performance characterization
of VITT-based protection.

ACM Reference Format:

Joshua Mathew, Tyler Chang, and Valeria Espinoza. 2026. Memory Tagging
Extension for the XiangShan RISC-V Processor. In . ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Memory safety issues such as buffer overflows and use-after-free
errors remain among the most critical sources of software vulnera-
bilities in systems written in low-level languages like C and C++ [1].
Traditional software-based debugging and sanitization tools (like
Valgrind [5] and Pin [4]) have proven valuable for detecting such
problems, but their high runtime overhead often limits their use to
testing environments. Hardware-assisted memory tagging provides
a promising alternative by enforcing pointer—-memory consistency
directly at the architectural level, reducing the performance cost
while improving reliability.

The RISC-V Memory Tagging Extension (MTE) [2] introduces
a set of mechanisms, such as the Zimt and Svatag/Smvatag exten-
sions, that associate tags with memory chunks and pointers. These
tags act as a lock-and-key system to detect invalid memory accesses
at runtime. Within this framework, the Virtually Indexed Tag Table
(VITT) plays a central role by defining a virtual-memory-based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, Washington, DC, USA

© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-X/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

storage structure for tag lookup and update operations. Each mem-
ory chunk’s tag is stored in the VITT, indexed by its virtual address,
allowing the hardware to verify pointer-memory tag matches dur-
ing load and store operations.

While memory tagging enhances security and debugging capa-
bilities, it also introduces additional computational steps, such as
tag lookups, tag stores and privilege-mode checks. These opera-
tions can impact execution time, memory access latency and cache
performance [11]. Understanding the magnitude and nature of this
performance overhead is essential for evaluating whether VITT and
the broader MTE design can be efficiently deployed in real-world
systems.

To conduct this analysis, we set up and configured the XiangShan
GEMS5 simulator as our experimental platform for implementing
and evaluating the RISC-V Memory Tagging Extension (MTE) with
Virtually Indexed Tag Table (VITT) support. This environment
enables modeling of realistic out-of-order execution while main-
taining fine-grained control over tagging configurations, providing
the necessary foundation for accurately measuring VITT’s microar-
chitectural overhead.

The remainder of this report is organized as follows. Section
2 provides background and related work. Section 3 describes the
architectural implementation of the Zimt extension (ZIMTE) for
XiangShan’s GEM5 emulator. Section 4 presents and analyzes our
results. Section 5 documents our attempts at solving challenging
blockers and Section 6 discusses future work.

2 Background and Related Work

Numerous software-based approaches have been proposed to de-
tect or mitigate memory safety issues. Tools such as AddressSan-
itizer (ASan) [7] and Valgrind [5] use compiler instrumentation
or dynamic binary analysis to detect memory violations during
testing. ASan, introduced in 2011, leverages shadow memory and
redzones to detect both spatial (buffer overflows) and temporal (use-
after-free) errors. However, this precision comes at a cost, because
typical overheads range from 1.5x-3x in CPU usage, memory and
binary size [8]. These costs restrict ASan’s applicability mainly to
development and fuzzing environments rather than production.
Furthermore, ASan’s software-only design has several limitations:
it cannot instrument assembly code, analyze precompiled binaries,
or detect invalid kernel memory accesses. It also lacks hardening
properties, hence its metadata and redzones can be bypassed by
skilled attackers [8].

To overcome these constraints, researchers have explored hardware-

assisted memory tagging, also known as memory coloring, tainting,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

or lock-and-key protection. The key idea is to associate each aligned
memory block (granule) of size TG bytes with a small TS-bit tag.
The same tag is stored in the unused high bits of every pointer
referencing that memory. During every load and store, the hard-
ware checks whether the pointer’s tag matches the tag stored for
the corresponding memory granule; mismatches trigger a fault.
This mechanism probabilistically detects both temporal and spa-
tial errors. For instance, with 4-bit tags (TS = 4), the probability of
catching a violation is approximately 94% [8].

Two notable implementations of hardware and hybrid memory
tagging have been presented and evaluated:

SPARC ADI (Application Data Integrity): A fully hardware-
based tagging mechanism available on SPARC M7/M8 CPUs run-
ning Solaris. It associates 4-bit tags with 64-byte memory regions
and raises precise or imprecise exceptions on tag mismatches. Tag
manipulation is performed using special instructions (stxa variants),
and tagged memory must be explicitly mapped using the MAP_ADI
flag. Tags are stored in hardware (likely within ECC bits), making
them inaccessible to user software [3, 8].

AArch64 HWASAN (Hardware-Assisted AddressSanitizer):
A compiler-based approach leveraging the ARMv8-A top-byte-
ignore feature. It stores 8-bit tags in the upper byte of pointers and
keeps corresponding memory tags in a directly mapped shadow
memory region (one tag per 16 bytes). The compiler instruments
load/store operations to perform tag checks, achieving partial hard-
ware acceleration. HWASAN significantly reduces ASan’s runtime
overhead while serving as a prototype for fully hardware-assisted
memory tagging [6, 8].

While these designs demonstrate that memory tagging can greatly
enhance software reliability, their hardware and compiler dependen-
cies limit deployment across architectures. Additionally, trade-offs
between tag granularity (TG), tag size (TS), and storage overhead
influence both performance and detection precision. These studies
underscore the need for further architectural exploration of mem-
ory tagging mechanisms, particularly in open and extensible ISAs
like RISC-V, where designs such as the Memory Tagging Extension
(MTE) and its Virtually Indexed Tag Table (VITT) propose virtual-
memory-based tag management.

For our project, we build on a prior work called ZIMTE [2], an
implementation of memory tagging extensions for RISC-V built for
the QEMU emulator. QEMU provides limited performance metrics,
and we are interested in evaluating the performance of the MTE
and VITT at the cycle-level granularity. Thus, our project aims to
implement the ZIMTE extension within the more robust XiangShan
GEMS5 RISC-V emulator in order to quantify the microarchitectural
impact of VITT operations on execution time, cache behavior, and
memory latency.

Joshua Mathew, Tyler Chang, and Valeria Espinoza

3 Architectural Implementation of Memory

Tagging
To support the ZIMTE extension within the XiangShan GEM5 simu-
lator, we implemented the requisite architectural state, control logic
and instruction set extensions. This design required modifying the
RISC-V decoder, the Control and Status Register (CSR) dile, and the
load/store execution unit to support Virtually Indexed Tag Tables
(VITT).

3.1 CSRs and VITT Structure

The core of the ZIMTE protection mechanism relies on the Virtu-
ally Indexed Tag Table (VITT), a software-managed data structure
that maps virtual addresses to their corresponding memory tags
[2]. To support VITT lookups in hardware, we added specific privi-
leged CSRs to the GEM5 RiscvISA class as specified in the ZIMTE
specification:

¢ menvcfg (Environment Configuration): Modified to in-
clude the Memory Tagging (MT) enable bit. This allows the
kernel to globally enable or disable tag checks [2, 5].

e mvitt (VITT Base Address): A new custom CSR that stores
the virtual base address of the tag table. Hardware tag checks
utilize this register to calculate the offset of a tag for a given
virtual memory address [5, 6].

Since we are in a bare-metal environment, we are using these
two registers for all modes (U/S/HS/M).

3.2 ZIMTE Instruction Implementation

We implemented the three primary instructions defined by the
ZIMTE specification to manage tag generation and storage.

3.2.1 gentag and addtag. The gentag (Generate Tag) instruc-
tion was implemented as an arithmetic operation that generates a
pseudo-random tag and inserts it into the upper bits of a destination
register. Similarly, addtag preserves the tag in the upper bits of a
pointer while adding an immediate offset to the lower address bits.
As these operations are strictly arithmetic and register-local, they
were implemented using standard GEM5 logic without requiring
memory subsystem interactions [10].

3.2.2 settag. The settag instruction is responsible for updating
the VITT with the tag currently held in a register. Unlike the arith-
metic instructions, settag functions as a memory store operation

(4].

Implementation challenge: In GEM5’s Out-of-Order (O3) CPU,
store operations are complex. We discovered that the decoder im-
plicitly splits stores into separate address-calculation and data-write
microoperations [9]. Initially, this caused execution misalignments
where our custom settag logic would abort unpreditably. We re-
solved this by defining settag as a custom store implementation
that bypasses standard splitting where necessary, ensuring the tag
write to the VITT address is atomic and correctly ordered.

Memory Tagging Extension for the XiangShan RISC-V Processor

3.3 Checked Load/Store and Micro-op
decomposition

The most significant architectural challenge was implementing
Checked Loads and Stores. These operations must:

(1) Calculate the target virtual address.

(2) Calculate the corresponding VITT entry address.

(3) Load the reference tag from the VITT.

(4) Compare the refrence tag with the pointer’s tag.

(5) Fault on mismatch or proceed with memory access on match.

3.3.1 Object-Oriented Macrooperations. To represent this complex
sequence in GEM5’s Object-Oriented C++ infrastucture, we could
not simply add a "check" flag to the existing Load/Store classes. The
03 pipeline requires precise instruction scheduling.

We utilized GEM5’s MacroOp (Macro-Operation) desing pat-
tern. We defined CheckedLoad and CheckedStore as subclasses
of RiscvMacroInst. When the decoder encounters a checked in-
struction, it does not issue a single operation to the execution unit.
Instead, it expands the MacroOp into a sequence of MicroOps:

e Tag Load MicroOp: Fetches the expected tag from the VITT.

e Check/Fault MicroOp: Compares the tags and raises a
MemoryTaggingFault if they differ.

e Data Access MicroOp: Performs the actual user-requested
load or store.

This decomposition allows the O3 scheduler to handle dependencies
correctly, ensuring that the data access does not commit if the tag
check fails.

4 Results

We successfully verified the functional correctness of the new in-
structions present in the ZIMTE extension: genttag, addtag, and
settag. To do this, we created a bare-metal application capable
of running on XS-GEMS5 that executes these instructions and vali-
dates expected behaviors. This section details the process of adding
memory tagging support to the infrastructure for building bare-
metal applications within XiangShan, and illustrates the successful
operation of the implemented instructions.

4.1 Experimental Infrastructure

All experiments were conducted on the CloudLab research platform
to ensure reproducibility and access to high-performance compute
resources. We utilized a c6525-25g instance type with the following
specifications:

e Processor: AMD EPYC 7302P (16 Cores, x86_64)

e Memory: 25 GB RAM, 100 GB Storage

e OS: Ubuntu 22.04 LTS
We developed automated shell scripts to standardize the deployment
of the XiangShan-GEM5 (XS-GEMS5) simulator and the RISC-V
GNU cross-compiler toolchain. The environment was configured
to support both Newlib (for bare-metal) and Linux-gnu toolchains.

4.2 ZIMTE Tool-chain Integration

The XiangShan project’s simulation environments (including GEM5)
only provide support for workloads in a flat binary format; thus,
they provide Abstract Machine (AM) as a software tool to compile

Conference’17, July 2017, Washington, DC, USA

compatible workloads from C source code. AM acts as a light-
weight bare-metal runtime library that abstracts hardware details,
allowing C programs to be compiled directly into memory images
loadable by XS-GEMS5. In order for AM to support the creation
of a memory-tagging-enabled workload, we had to modify the
riscv-gnu-toolchain, which AM employs to cross-compile for its
environment. We relied heavily on the existing work of Christoph
Miillner, integrating his changes to binutils, gcc, and glibc for
ZIMTE support into the riscv-gnu-toolchain and AM.

4.3 Bare-metal Workload

With these modifications, we created a bare-metal application writ-
ten primarily in RISC-V assembly with a C wrapper, which verified
the functional correctness of our implemented ZIMTE instructions.
In this section, we provide a short description of each ZIMTE fea-
ture tested with our application and show the resulting output
when run on GEM5.

GENTAG and ADDTAG: These instructions manipulate the target
register to contain a four-bit tag in the top four bits. The gentag
instruction does this randomly, whereas the addtag instruction
takes in a register that already contains a tag and places the sum
of this tag and a provided immediate into its destination register’s
top 4 bits. We tested these instructions on the pointer variables
gentag_ptr and addtag_ptr and printed their values before and
after executing the respective instructions.

Testing GENTAG
genttag_ptr: 0000000080009FB8
executing "gentag genttag_ptr, zero"
genttag_ptr: 1000000000000000

Testing ADDTAG
addtag_ptr: 0000000000000000
executing "addtag addtag_ptr, genttag_ptr, 1
addtag_ptr: 2000000000000000

n

Both instructions clear and insert a tag into the top 4 bits of the
register (pointer) as expected.

Enabling Memory Tagging: In order to enable memory tag-
ging modes in various privilege modes, the ZIMTE extension adds
two bits termed MT_MODE to the envcfg control status registers
(CSRs). These two bits control whether memory tagging is enabled
in the next privilege mode as well as the bit-width of the tag. Fur-
thermore, the SVATAG [2] extension defines that tag storage is
implemented as a large array in the virtual address space of the
execution environment and defines the mvitt CSR which stores the
base of tag storage. As mentioned in Section 3 for the purposes of
testing we are using these as global CSRs to define memory tagging
properties for all modes.

We tested the modified CSR configurations from these extensions
by writing and reading to them via the csrr and csrw instructions.
Furthermore, during testing, we realized it was pivotal to ensure
virtual address translation was enabled during this process as it is
not enabled by default.

Conference’17, July 2017, Washington, DC, USA

Setting Virtual Address Translation Mode
reading: satp = 0x0
writing: satp = 0x9000000000080100
reading: satp = 0x9000000000080100
Translation mode: 9
Sv48 address translation ENABLED
Enabling MT_MODE
read menvcfg=0000000000000000
writing menvcfg=0000000300000000
read menvcfg=0000000800000000
Setting the VITT base register
read mvitt=0000000000000000
writing mvitt=0000000080100000
read mvitt=0000000080100000

All of these modifications aim to set up VITT tag lookup and
storage for the ZIMTE extension.

SETTAG: This instruction takes a tag from the provided pointer
argument, calculates the correct place in virtual memory that cor-
responds to the pointer’s VITT entry, and writes the tag to that
location. It is important to note that the instruction presumes that
the provided register is a pointer with a properly set up tag from ei-
ther gentag or addtag. We tested these instructions on the pointer
variable gentag_ptr and verified settag was correctly writing
to the VITT by computing the virtual address the settag write
should target, and then reading before and after the instruction. It
is important to note that in a final implementation, the hart should
raise an access fault if there is a load/store to a virtual address in
the VITT range.

Testing SETTAG
genttag_ptr set to 1000000080009FB8
reading from vitt address 00000000841004FD: @
executing "settag genttag_ptr, 0"
expecting tag=1 @ vaddr=00000000841004FD
reading from vitt address 00000000841004FD: 1

The expected tag to be written into the VITT entry calculated above
was 1; as shown, before settag was executed the entry was 0, and
afterwards it changed to 1.

5 Challenges

We encountered significant technical challenges during the devel-
opment of this project. From working with a large and unfamiliar
codebase such as XiangShan GEM5 to assembling many complex
and custom dependencies, the following highlights some notable
challenges surrounding this project.

5.1 XiangShan Infrastructure and C++
Templating
One of the biggest challenges we ran into was simply navigating

the XiangShan / gem5 infrastructure and its heavy use of C++
templating, especially given that we started with very little C++

Joshua Mathew, Tyler Chang, and Valeria Espinoza

background and only limited computer architecture experience.
When it came to adding an instruction, it meant understanding
how .isa descriptions expand into auto-generated C++ classes, how
those classes interact with the out-of-order pipeline, and how flags
and templates subtly change behavior. For example, when we first
implemented settag, the instruction appeared to execute, but it
consistently wrote the wrong value into memory. After a lot of
digging, we discovered that the IsSplitStoreAddr flag was causing
the store to be treated as a split address/data micro-op pair, even
though our instruction only ever produced a single micro-op. This
mismatch silently broke the store and resulted in zeros being written
instead of the computed tag. A similar kind of complexity showed
up when we tried to extend the load/store logic to perform tag
checks. Conceptually, we wanted to load the tag, compare it, if it
matched, load the data, and throw an exception if it the tags didn’t
match. But in the gem5 timing and out-of-order infrastructure,
that effectively means doing a load inside another load, within a
single instruction, which clashes with the core assumptions of the
out-of-order pipeline and the Load/Store Queue. That pushed us
deeper into thinking in terms of micro-ops, multi-phase memory
requests, and how apparently simple semantics actually need to be
split across multiple pipeline stages and helper templates.

5.2 Full-System Stack Configuration

A critical goal of this project is to characterize VITT overhead
within a realistic userspace environment. This requires booting a
Linux kernel on XS-GEM5. We attempted to reproduce the build
environment for a known working binary (linux.bin) provided
by XiangShan. Our methodology shifted from following deprecated
documentation to a "version-matching" strategy, where we reverse-
engineered the components of the working binary.

5.2.1 Component Versioning. We identified and attempted to inte-
grate the following specific version stack:

¢ Bootloader: OpenSBI v1.4 (Generic Platform)

e Kernel: Linux v6.1.83 (configured with xiangshan_defconfig)

e Userspace: A minimal initramfs containing a statically
linked "Hello World" executable.

5.2.2 Build Process and Debugging. To ensure compatibility, we
extracted the Device Tree Blob (DTB) directly from the reference
linux.bin using binwalk and dd, rather than generating a poten-
tially incompatible one from source.

During the compilation of OpenSBI v1.4 with modern GCC
toolchains, we encountered type definition conflicts regarding the
C boolean type in sbi_types.h and semihosting.c. We applied
source-level patches to manually define these types and modify
function signatures, enabling a successful build of the firmware
payload (fw_payload.bin).

5.2.3 Current Status. The resulting payload successfully initializes
OpenSBI and hands off execution to the Linux kernel. However, the
system currently stalls during the kernel hardware initialization
phase. This suggests a lingering mismatch between the extracted
Device Tree and the specific hardware configuration parameters
expected by the kernel version. Future work will focus on isolating

Memory Tagging Extension for the XiangShan RISC-V Processor

the specific device driver causing the panic. For an in-depth step-
by-step tutorial of all the steps we tried for running Linux, please
refer to this branch of the repository,

5.3 Miscellaneous Hurdles

We also ran into simpler hurdles such as being unfamiliar with the
development environment and understanding how simple debug
prints worked. We ended up having to create our own printing
class, allowing us to efficiently filter out irrelevant prints and speed
up debugging our implementation. Other problems also included
assumptions that we were not aware of, such as the default memory
mode within GEM5 being User Mode. It wasn’t until later, after
robust testing, that we found out the default User Mode meant
no virtual memory and direct physical memory access. Given the
nature of our project, this was not the desired simulation behavior,
resulting in us having to manually set the memory mode later on
when testing our userspace program.

6 Future Work

As future work, we are interested in exploring and deciding on an
architectural and implementation decision for including tag checks
within load/store instructions. By coming out of this project having
learned much of XS-GEMS5’s architectural infrastructure along with
C++ templating knowledge, we look forward to exploring deeper
architectural modifications such as micro-operations and multi-
phase memory requests. In terms of workloads, we have only been
calling our added memory tagging instructions manually in C pro-
grams so far. The next goal would be to modify Abstract Machine
to insert our added memory tagging instructions throughout all
compiled programs, allowing us to fully test memory tagging in
action. After that, we are also interested in finding a solution for
running Linux on gem5. We have already made a post on Xiang-
Shan’s GitHub regarding this issue and look forward to working
towards a solution.

References

[1] Nurit Dor, Michael Rodeh, and Mooly Sagiv. 2003. CSSV: Towards a realistic
tool for statically detecting all buffer overflows in C. In Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and implementation.
155-167.

[2] RISC-V International. 2025. RISC-V Memory Tagging Extension Specification.
Technical Report.

[3] Georgios K Konstadinidis, Hongping Penny Li, Francis Schumacher, Venkat
Krishnaswamy, Hoyeol Cho, Sudesna Dash, Robert P Masleid, Chaoyang Zheng,
Yuanjung David Lin, Paul Loewenstein, et al. 2015. SPARC M7: A 20 nm 32-core
64 MB L3 cache processor. IEEE Journal of Solid-State Circuits 51, 1 (2015), 79-91.

[4] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. Acm
sigplan notices 40, 6 (2005), 190—-200.

[5] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. ACM Sigplan notices 42, 6 (2007), 89-100.

[6] Jiwon Seo, Junseung You, Yungi Cho, Yeongpil Cho, Donghyun Kwon, and Yun-
heung Paek. 2023. Sfitag: Efficient software fault isolation with memory tagging
for arm kernel extensions. In Proceedings of the 2023 ACM Asia Conference on
Computer and Communications Security. 469-480.

[7] Kamil Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov.
2012. AddressSanitizer: A fast address sanity checker. In USENIX Annual Technical
Conference. 309-318.

[8] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich,
and Dmitry Vyukov. 2018. Memory Tagging and how it improves C/C++ memory
safety. CoRR abs/1802.09517 (2018). arXiv:1802.09517 http://arxiv.org/abs/1802.
09517

Conference’17, July 2017, Washington, DC, USA

[9] The gem5 Project. 2025. O3CPU Model. https://www.gemb5.org/documentation/
general_docs/cpu_models/O3CPU Accessed: Dec. 8, 2025.

[10] Martin Unterguggenberger, David Schrammel, Pascal Nasahl, Robert Schilling,
Lukas Lamster, and Stefan Mangard. 2023. Multi-Tag: A Hardware-Software
Co-Design for Memory Safety based on Multi-Granular Memory Tagging. In
Proceedings of the 2023 ACM Asia Conference on Computer and Communications
Security (Melbourne, VIC, Australia) (ASIA CCS "23). Association for Computing
Machinery, New York, NY, USA, 177-189. doi:10.1145/3579856.3590331

[11] Irene Wang, Prasenjit Chakraborty, Zi Yu Xue, and Yen Fu Lin. 2022. Evaluation
of gem5 for performance modeling of ARM Cortex-R based embedded SoCs.
Microprocessors and Microsystems 93 (2022), 104599.

https://github.com/EECS6894/vitt-characterization/tree/linux-attempt
https://arxiv.org/abs/1802.09517
http://arxiv.org/abs/1802.09517
http://arxiv.org/abs/1802.09517
https://www.gem5.org/documentation/general_docs/cpu_models/O3CPU
https://www.gem5.org/documentation/general_docs/cpu_models/O3CPU
https://doi.org/10.1145/3579856.3590331

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Architectural Implementation of Memory Tagging
	3.1 CSRs and VITT Structure
	3.2 ZIMTE Instruction Implementation
	3.3 Checked Load/Store and Micro-op decomposition

	4 Results
	4.1 Experimental Infrastructure
	4.2 ZIMTE Tool-chain Integration
	4.3 Bare-metal Workload

	5 Challenges
	5.1 XiangShan Infrastructure and C++ Templating
	5.2 Full-System Stack Configuration
	5.3 Miscellaneous Hurdles

	6 Future Work
	References

