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Abstract
Energy consumption increasingly constrains the performance and
scalability of modern multicore systems, motivating operating sys-
tem schedulers that account for energy directly rather than treating
it as a secondary concern. Prior work, notably Wattmeter’s Energy-
Fair Scheduling (EFS) [11], demonstrated that incorporating hard-
ware energy measurements into scheduling decisions can reduce
energy usage while preserving fairness, but was primarily evalu-
ated on single-core systems and implemented outside the mainline
Linux scheduler.

In this work, we re-implement a variant of EFS using Linux
sched_ext[6] and eBPF[2], leveraging per-core energy measure-
ments exposed by AMD’s RAPL interface. We focus on understand-
ing how energy consumption manifests across different workload
classes on modern multicore hardware, rather than proposing a
new scheduling policy. Using synthetic CPU-bound and memory-
bound workloads, we evaluate how energy usage scales with par-
allelism, workload intensity, and memory behavior. Our results
show that memory-intensive workloads can consume more total
energy than CPU-bound workloads despite lower computational
intensity, and that high memory pressure may reduce total energy
by inducing extended stall periods. These findings highlight the
importance of direct energy measurement and suggest that energy-
aware scheduling on multicore systems requires careful treatment
of both computation and memory behavior.

1 Introduction
Energy efficiency has become a major concern in modern com-
puting systems. As processors continue to scale in core count and
heterogeneity, energy consumption increasingly constrains perfor-
mance, cost, and sustainability across domains ranging from mobile
and embedded platforms to large-scale data centers. Traditional
operating system schedulers, however, have largely been designed
around performance-centric metrics such as fairness, latency, and
throughput, treating energy as a secondary or indirect consider-
ation. This motivates a growing body of work on energy-aware
scheduling, which seeks to incorporate power and energy signals
directly into scheduling decisions in order to better align system
behavior with energy efficiency goals.

Prior work has shown that incorporating even limited energy
awareness into the operating system scheduler can yield substantial
reductions in energy consumption without degrading performance.
The Wattmeter paper proposed Energy-Fair Scheduling (EFS), a
modification of Linux’s Completely Fair Scheduler (CFS) that re-
places time-based fairness with energy-based fairness. Rather than
accounting for each task’s progress using virtual runtime (vrun-
time), as in CFS, EFS scales vruntime by the energy consumed while
a task is executing, causing energy-hungry tasks to advance more

quickly in virtual time and therefore receive proportionally less
CPU service. In effect, EFS preserves the fairness structure of CFS
while redefining the resource being fairly shared from CPU time
to energy. To support this design, Wattmeter relies on hardware
energy counters exposed with Intel’s Running Average Power Limit
(RAPL)[4] interface, which provides fine-grained energy measure-
ments that can be sampled at runtime and attributed to individual
tasks. The EFS policy was implemented using ghOSt [8], a user-
space kernel bypass framework that allows scheduling decisions
to be made outside the kernel while still exerting control over task
execution. ghOSt enabledWattmeter to intercept scheduling events,
track per-task energy consumption, and update vruntime in accor-
dance with EFS without modifying core kernel scheduler code.

WhileWattmeter provided an important proof of concept, several
limitations motivate further exploration. First, modern processors
are overwhelmingly multicore, and energy behavior on such sys-
tems is significantly more complex. Shared resources, core-level
power management, and inter-core interference all complicate the
relationship between scheduling decisions and energy consump-
tion. Results derived from single-core systems may not generalize
directly to multicore environments, particularly when workloads
with diverse resource demands execute concurrently. Second, the
ghOSt framework, while powerful, operates outside the mainline
Linux scheduler and requires a specialized execution environment.
Recent advances such as sched_ext[6] offer an alternative path of
allowing custom scheduling policies to be implemented using eBPF
while integrating directly with the Linux scheduler. This lowers the
barrier to experimentation and enables energy-aware scheduling
policies to coexist with production kernel infrastructure.

At the same time, hardware support for energy measurement
has continued to evolve. Recent generations of AMD processors
along with patches to Linux have exposed and enabled per-core en-
ergy readings through RAPL[10], enabling more precise attribution
of energy consumption at the core level. Unlike earlier platforms
where energy measurements were coarse-grained or package-wide,
these interfaces make it possible to observe how energy usage
varies across cores and over time in response to scheduling deci-
sions. This capability opens the door to studying energy-aware
scheduling in realistic multicore settings, where tasks compete for
CPU and memory resources and where workload characteristics
play a critical role in determining energy efficiency.

Motivated by these developments, this work explores energy be-
havior in a multicore system using a continuation of the Wattmeter
approach, adapted tomodern Linux scheduling infrastructure. Rather
than proposing a fundamentally new scheduling policy, we re-
implement a variant of the EFS policy using sched_ext and focus
on understanding how energy consumption manifests across differ-
ent classes of workloads. In particular, we investigate the energy



impact of CPU-intensive versusmemory-intensiveworkloads, lever-
aging per-core energy measurements to analyze how scheduling
and workload behavior interact on multicore hardware.

2 Related Work
Energy-aware scheduling has been studied extensively across op-
erating systems and architecture research. Early work explored
dynamic voltage and frequency scaling (DVFS) as a mechanism
for reducing energy consumption by adjusting CPU frequency in
response to load [13]. Linux integrates several DVFS governors that
trade off performance and energy, but these mechanisms operate
largely independently of task-level scheduling policy.

Subsequent work has examined energy attribution and account-
ing in multicore systems, highlighting the challenges posed by
shared caches, memory controllers, and uncore components [3, 9].
These studies show that attributing energy to individual tasks is
inherently approximate, as energy consumption reflects both local
execution and shared resource activity.

More recent work has focused on exposing energy consumption
to userspace and analysis tools to better understand application-
level energy behavior. Tools such as Scaphandre provide continuous,
per-process energy monitoring by leveraging RAPL counters and
exporting energy metrics to userspace for profiling and visualiza-
tion [7]. These systems emphasize observability and accounting
rather than direct control over scheduling decisions, but highlight
the growing demand for fine-grained, task-level energy insight.

A common characteristic of these energy monitoring and anal-
ysis tools is that they operate primarily in userspace, relying on
periodic sampling and post hoc analysis of hardware counters.
While this design simplifies deployment and instrumentation, it
limits the ability to react to energy signals at fine granularity or to
influence scheduling decisions in real time. By contrast, sched_ext
policies implemented in eBPF execute in the scheduler’s fast path
and can incorporate energy measurements directly into task se-
lection, enabling low-latency, policy-driven responses to energy
behavior that are difficult to achieve from userspace alone.

Mainline Linux has also introduced energy-aware scheduler
hooks such as the sched_energy interface, which exposes energy
accounting and capping support in the kernel scheduler [12]. These
interfaces provide a foundation for energy-aware policies in the ker-
nel, but are oriented toward general platform power management
and capping rather than the per-task fairness mechanisms explored
in this work. While sched_energy provides general energy hooks,
it does not directly expose or utilize fine-grained per-task energy
readings in the scheduler’s fast path in the way sched_ext with
RAPL does, motivating our combined eBPF and MSR approach.

3 System Design
This project’s implementation has two main pieces that work to-
gether: (1) a small kernel module that exposes per-core energy
readings to BPF as a kfunc[1], and (2) a sched_ext scheduler writ-
ten as an eBPF program that uses those readings to estimate per-task
power and enforce energy fairness through an energy-weighted
notion of virtual runtime. The scheduler continuously (a) samples
the current core’s energy counter at context-switch boundaries, (b)
turns the energy delta over the elapsed on-core time into a power

estimate for the running task, (c) smooths that estimate over time,
and (d) uses it at enqueue time to bias ordering so that higher-power
tasks effectively advance faster in virtual time than lower-power
tasks.

3.1 Per-Core Energy Readings
Because sched_ext policies execute in BPF, they cannot directly is-
sue privileged instructions such as reading a model-specific register
(MSR). To make per-core energy available inside the scheduling pol-
icy, we implemented a kfunc[1] called read_core_energy as a kernel
module which is then loaded into the kernel and is callable by BPF.
The kfunc reads AMD RAPL model-specific registers (MSRs) to
obtain a per-core monotonically increasing energy counter for the
current core. To interpret the raw counter, the module also reads a
power/energy unit MSR during module initialization to extract the
energy scaling exponent which, when combined with the energy
counter, allows us to obtain metrics in Joules.

3.2 Scheduler Implementation
We ported and adapted the Energy-Fair Scheduling (EFS) policy
from the Wattmeter paper into the sched_ext framework, keeping
the policy’s core intuition intact: if two tasks have received com-
parable service, the one that burns energy faster should be treated
as having progressed more and therefore should not continually
outrun energy-efficient work. In Wattmeter’s formulation[11], that
intuition is captured by extending fairness from time to energy
using a virtualized metric that resembles CFS’s virtual runtime, but
scaled by an estimate of task power as shown through the formula:

𝑣energy = 𝑣runtime · 𝑣power
EFS would then always pick the task with the lowest 𝑣𝑒𝑛𝑒𝑟𝑔𝑦 usage.
Our sched_ext implementation follows that same structure: we
maintain a global ordering based on a per-task virtual energy met-
ric, and we update each task’s estimated power using RAPL energy
readings gathered while the task is on-CPU. Using sched_ext’s
queueing primitives, we maintain a single global ordering over
runnable tasks by 𝑣𝑒𝑛𝑒𝑟𝑔𝑦 , closely matching Wattmeter’s EFS en-
queue/ordering behavior.

When a task begins running, we record the start timestamp and
a per-core energy baseline for the CPU it is executing on; when
the task stops, we sample the per-core energy counter again and
compute Δ𝑡𝑖𝑚𝑒 and Δ𝑒𝑛𝑒𝑟𝑔𝑦 for that running interval. Dividing
Δ𝑒𝑛𝑒𝑟𝑔𝑦 by Δ𝑡𝑖𝑚𝑒 yields an interval power estimate, which we
stabilize via a simple smoothing update that blends the new estimate
with the prior stored value to reduce sensitivity to short, noisy
intervals while still tracking phase changes. In parallel, we update
cumulative accounting: we add Δ𝑒𝑛𝑒𝑟𝑔𝑦 to the task’s attributed
consumption and increment global totals for time and energy, which
feeds back into the enqueue path as the evolving system-average
power baseline used for normalization. On the dispatch side, CPUs
draw from the shared globally ordered queue, preserving the 𝑣𝑒𝑛𝑒𝑟𝑔𝑦
rank order as the primary policy mechanism.

3.3 eBPF Maps
To support EFS, we keep a small set of persistent data structures
as eBPF maps. Conceptually, these maps serve three purposes: (i)



tracking when a task ran, (ii) tracking what the CPU’s energy
counter looked like at the start of that run, and (iii) maintaining
task-level and system-level aggregates that allow us to normalize
and stabilize power estimates.

(1) pid_to_run_start: records the timestamp (in nanosec-
onds) when a task most recently started running. This al-
lows us to compute the duration of each contiguous on-CPU
interval.

(2) cpu_to_prev_energy: records the last energy reading ob-
served on each CPU at the moment a task began running.
Because our energy interface is per-core, this baseline snap-
shot is naturally indexed by CPU rather than PID.

(3) pid_to_power: stores the scheduler’s current estimate of
each task’s power. This value is updated at every stop event
using the energy delta accumulated while the task ran.

(4) pid_to_consumption: stores each task’s cumulative en-
ergy consumption over time. While not strictly required
to order tasks by 𝑣𝑒𝑛𝑒𝑟𝑔𝑦, it is useful for reporting and
analysis at the task granularity.

(5) total: a compact global accumulator (a single-entry array)
that tracks overall CPU running time and total energy at-
tributed to running tasks. We use it to compute a coarse
system average power, which then becomes the normaliza-
tion baseline for per-task power.

There are several other less relevant eBPF maps that are used to
record interesting information such as CPU migration, last enqueue
time, etc. We also include some pragmatic handling for special task
classes such as having kernel threads being treated separately and
routed through a global queue without EFS accounting.

4 Experiments
We performed our experiment on the r6615 machines on Cloudlab
[5], which features the AMD EPYC 9004 Series cores, which support
reading per-core energy readings via the RAPL MSR registers. [We
also experimented with the c6620 machines on Cloudlab, to experi-
ment with Intel’s versions of the RAPL interface]. Each processor
possesses a different model of how energy is counted among the
CPUs

Figure 1: Block diagram representation of the different RAPL
domains. AMD supports reading energy from each individual
core, while Intel does not.

4.1 CPU vs. Non-CPU Readings
One aspect of Wattmeter that we sought to improve upon was to
profile energy usage more granularly across the CPU package. That
is, would we be able to make precise measurements of energy across
cache usage, the DRAM or the integrated GPU? To test this, we
equipped our kfunc to read from the appropriate MSRs necessary
to read from the PP0, PP1 and other domains specified in the RAPL
interface and measured their values over various workloads.

Figure 2: Overall energy consumption of stress_core over
20 seconds as a function of number of spawned threads.

4.2 Workloads
We primarily tested our sched_ext scheduler using two programs
that targeted different components of the CPU. The two programs
are defined as follows:

stress_core is a CPU-bound benchmark that keeps a single
core fully occupied with arithmetic operations, producing
sustained high core activity with minimal memory traffic,
making it suitable for evaluating core-level energy behavior
under sched_ext.

mem_miss is a memory-bound benchmark that repeatedly ac-
cesses a large memory region with a cache-unfriendly ac-
cess pattern, producing a high rate of cache misses and sus-
tained DRAM traffic. Its parameters can be varied to control
the working set size and access behavior, making it suit-
able for evaluating how sched_ext responds to workloads
whose energy consumption is dominated by the memory
subsystem rather than core execution.

Figure 3 presents the cumulative energy consumption of four
workloads measured over a 60-second execution window using our
Energy-Fair Scheduler. Energy usage was sampled every 100 ms by
polling the pid_to_consumption eBPF map, which accumulates
per-task energy attributed from per-core RAPL readings. The ex-
periment compares stress_core against three memory-intensive
configurations of mem_miss, each operating on a fixed 512 MB allo-
cation but with increasing working-set sizes and write intensities.
The low-intensity configuration accesses a small working set with
infrequent writes, the medium configuration increases both the
working set and write activity, and the high-intensity configuration
maximizes memory pressure by operating on the full allocation



Figure 3: Energy usage of CPU and memory intensive work-
loads over 60 seconds.

with a high write percentage. These configurations allow us to iso-
late how progressively stronger memory behavior impacts energy
consumption under the same scheduling policy. Across the full du-
ration, all memory-intensive workloads exhibit steeper cumulative
energy growth than the CPU-intensive workload, indicating that
memory-dominated execution leads to higher overall energy usage
despite lower computational intensity.

Interestingly, the most aggressive memory-intensive configura-
tion consumes less total energy than the low- andmedium-intensity
variants, despite generating more memory pressure. We believe this
result can be explained by the interaction between memory stalls
and core power draw. At high memory intensity for the given time
frame, the core may have spent a significant fraction of time stalled
waiting on memory, reducing effective instruction throughput and
lowering dynamic core power consumption. In contrast, the low-
and medium-intensity configurations maintain enough locality to
keep the core more actively engaged while still incurring frequent
memory accesses, leading to higher sustained power draw over
time. This is not to say that higher memory intensity will always
consume less energy in the long run compared to the low- and
medium-intensity variants, as shown in Figure 4, but rather, it is a
notable observation to be aware of from this experiment.

Figure 4: Cumulative energy Usage of mem_miss over different
working set sizes.

Figure 5: Power behavior over time of mem_miss over different
working set sizes.

4.3 Concurrency & Parallelism
One of the features of Wattmeter that we wished to improve on was
measuring how system energy usage was affected when running
multiple programs on multiple cores. To simulate this, we launched
varying numbers of instances of both stress_core and mem_miss.

5 Results and Evaluation
We were able to successfully run our workloads and observe some
effect on the overall energy profile of the system. As shown in Fig-
ures 2 increasing the number of spawned threads of a CPU-intensive
workload almost linearly increased the total energy spent over time.
Figure 2 also displays the power-capping feature of the EFS, which
caps the energy usage to the performance of an 8-core machine,
even though the hardware features 64 cores. Figure 4 displays a very
similar result, with mem_miss consuming more energy with higher
working sets. With regards to actual power behavior, we found
that stress_core was exactly as expected, consuming energy at
extremely steady and constant rates, while mem_miss exhibited
large fluctuations corresponding to bursts of memory activity and
stall-heavy execution. These bursts align with periods of elevated
energy consumption followed by extended low-power intervals,
reflecting the dominance of memory stalls over sustained core exe-
cution. This contrast further illustrates that steady, compute-heavy
workloads lead to predictable and linearly scaling energy usage,



whereas memory-bound workloads produce more complex energy
profiles that depend strongly on access patterns and locality.

5.1 Core vs Uncore Energy
As mentioned earlier, we attempted to attribute certain amounts of
energy usage to different parts of the processor using the different
RAPL domains. Unfortunately, however, we found that for most of
the Intel processors that we tested on Cloudlab, the RAPL MSRs
were not very well-implemented - that is, we would retrieve rea-
sonable values for the package energy domain and the core energy
domain, but essentially useless values for the DRAM or "uncore"
domain, which contains the integrated GPU or other components.
This is most likely due to the fact that the RAPL interface is sup-
ported to varying degrees across processors, and we found that
using the per-core energy readings of AMDs RAPL were our best
bet. We also attempted a naive calculation to separate out the en-
ergy used by cache or memory controllers by subtracting the full
package power from the sum of the CPU cores, implemented as the
following equation:

uncore_energy = package_energy −
num_cpus∑︁

𝑖=0
Unfortunately, however, we observed that this value rose at a

constant rate, even when the power of the CPUs was varying over
time. In other words, no matter the variance in program execution,
the amount of energy consumed by the "uncore" was constant
and hence yielded no useful information for our scheduler or in
determining where energy was being spent.

To try and cause some on the uncore energy, we used varying in-
tensities of the mem_miss workload, but found negligible variations
in energy.

Figure 6: Power behavior of a simple sequential workload,
running stress_core, mem_miss and stress_core in order.

To compare the energy usage of mem_miss and stress_core
side by side, we created a sequential "mixed" workload which ran
several instances of stress_core, followed by several instances of
mem_miss and so on. One such run is shown in Figure 6. Consistent
with our previous isolated runs, we observe that stress_core
consumes significantly more energy than mem_miss, which shows
up infrequently in small bursts.

6 Limitations and Future Work
While this project demonstrates the feasibility of implementing an
energy-aware scheduler on a multi-core system using sched_ext

and per-core energy measurements, there are several important
limitations that suggest directions for future work.

First, although we leverage per-core RAPL energy counters, the
attribution of energy to individual tasks remains approximate. En-
ergy readings are sampled at context-switch boundaries and at-
tributed to the task that was running during the interval, which
implicitly assumes that energy consumption during that interval
is dominated by the executing task. In practice, energy usage is
also influenced by shared microarchitectural components such as
caches, memory controllers, and interconnects, as well as by back-
ground kernel activity. Future work could incorporate additional
hardware counters or statistical attribution techniques to better
separate task-level energy consumption from shared system effects.

An additional practical limitation arises from the nature of the
RAPL energy interface itself. RAPL exposes energy consumption
as a monotonically increasing hardware counter whose units are
defined by a model-specific energy scaling factor read from a sep-
arate MSR. Converting raw counter values into Joules therefore
relies on a fixed conversion factor that is assumed to be accurate
and stable across operating conditions. In reality, this factor is de-
rived from hardware characterization and may not perfectly reflect
instantaneous energy usage across voltage, frequency, tempera-
ture, or workload variations. As a result, while RAPL provides a
useful and widely adopted approximation of energy consumption,
the measurements it exposes should be interpreted as estimates
rather than ground truth. Future work could explore calibration
techniques, cross-validation with external power measurements,
or hybrid approaches that combine RAPL with other performance
counters to improve robustness.

Second, the power estimation model used by our scheduler is
intentionally simple. We compute instantaneous power from en-
ergy deltas over execution intervals and apply lightweight smooth-
ing to reduce noise. While sufficient for capturing coarse trends,
this model may lag rapid phase changes or misestimate power for
bursty workloads. More sophisticated filtering, phase detection, or
predictive models could improve responsiveness while preserving
stability.

Third, our evaluation focuses primarily on synthetic workloads
that isolate CPU-bound and memory-bound behavior. While this
helps clarify how different resource profiles affect energy consump-
tion, real-world applications often exhibit mixed and time-varying
behavior. Evaluating the scheduler using more complex workloads,
such as databases, web servers, or multi-stage pipelines, would pro-
vide deeper insight into its effectiveness under realistic conditions.

Finally, sched_ext provides significant flexibility but also im-
poses practical constraints. BPF programs must obey verifier restric-
tions, operate within tight instruction limits, and rely on a limited
set of kernel-visible primitives. Exploring which aspects of energy-
aware scheduling are best implemented inside sched_ext versus
in supporting kernel modules remains an open design question.

Overall, this work serves as a step toward practical energy-aware
scheduling onmodernmulticore systems. By combining sched_ext
with increasingly fine-grained hardware energy measurements,
future systems can explore richer scheduling policies that balance
performance, fairness, and energy efficiency in a more holistic
manner.



7 Code
The source code for this project can be found at https://github.com/
tylerchang/energy-scheduler/.
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